高级检索

带边界的无界区域中Beltrami流的刘维尔型定理

Liouville Type Theorem for Beltrami Flow in Unbounded Domain with Nonempty Boundary

  • 摘要: 针对与星形域相关带边界的无界区域中Beltrami流的刘维尔型问题,总结出Beltrami流在满足4种积分条件下的刘维尔型定理,且每种条件都比之前的条件更弱。引入2个重要引理,建立关于Beltrami流的体积分与面积分的恒等式。采用反证法和利用不等式放缩技巧,并结合星形域边界上单位外法向量的特殊性质,推导出带边界的无界区域中Beltrami流的刘维尔型定理。对于其中一种情况,还采用了引入截断函数的方法。

     

    Abstract: Regarding the Liouville type problem for Beltrami flow in unbounded domain with nonempty boundary associated with star-shaped domain, it was concluded that Liouville type theorem holds under one of four conditions that the Beltrami flow satisfies, and each condition was weaker than previous condition. Two useful lemmas were introduced to establish the relation between volume integral and surface integral on Beltrami flow. Adopting the proof by contradiction, using inequality scaling skills and considering the special property of the unit outer normal vector along the boundary of star-shaped domain, Liouville type theorem for Beltrami flow in unbounded domain with nonempty boundary was obtained. The method of choosing appropriate cut-off function was used for one of the situations.

     

/

返回文章
返回