高级检索

酸碱溶液腐蚀作用后含孔砂岩试件的动力学特性试验研究

Experimental Study on Dynamic Properties of Porous Sandstone Specimens after Acid and Alkaline Solution Corrosion

  • 摘要: 以含孔砂岩试件(外径50 mm、内径10 mm)为研究对象,通过28 d的酸性(pH=5)和碱性溶液(pH=9)腐蚀试验,分析腐蚀环境对试件物理参数、矿物组成及微观结构的变化规律。结合分离式霍普金森压杆(SHPB)装置在不同冲击速度下开展动态冲击压缩试验,探究酸碱腐蚀对砂岩试件物理化学损伤机制和动力学特性的影响机理。结果表明:酸性环境促使试件溶出Na+,Al3+,Fe3+等离子,并生成硅酸(H2SiO3)白色沉淀物;碱性环境则主要产生Al(OH)4和H2SiO42−等溶解物质。试件动抗压强度和动弹性模量随冲击速度呈指数型增长,而动峰值应变和平均应变率则符合二次函数增长规律;碱性腐蚀试件的动抗压强度和动弹性模量均优于酸性腐蚀试件,但两者各项动力学参数较中性环境均出现显著劣化。此外,随着冲击速度提高,试件破碎程度逐渐加剧,平均粒径呈减小趋势。本研究结果揭示了化学-力学耦合作用下含孔砂岩的损伤累积机制,可为地下工程岩体的长期稳定性评估提供了理论依据。

     

    Abstract: Using sandstone specimens with holes (outer diameter: 50 mm, inner diameter: 10 mm) as the research object, 28-day corrosion tests were conducted in acidic (pH=5) and alkaline (pH=9) solutions to analyze the effects of corrosive environments on physical parameters, mineral composition, and microstructure. The dynamic impact compression tests were conducted at different impact velocities using a split Hopkinson pressure bar (SHPB) setup, the effects of acid and alkaline corrosion on the physicochemical damage mechanisms and dynamic mechanical properties of sandstone specimens were investigated. The results show that acidic corrosion l conditions dissolve Na+, Al3+, Fe3+ ions white forming silicic acid (H2SiO3) precipitates, whereas alkaline environments primarily generate dissolved species including Al(OH)4 and H2SiO42−. The dynamic compressive strength and elastic modulus follow exponential growth patterns with increasing impact velocity, while dynamic peak strain and average strain rate exhibit quadratic growth trends. Alkaline-corroded specimens demonstrate superior dynamic strength properties compared to acid-corroded ones, though both show significant degradation relative to neutral conditions. Furthermore, increasing impact velocity intensifies specimen fragmentation and reduces average particle size. These findings elucidate the damage accumulation mechanisms in perforated sandstone under coupled chemical-mechanical effects, providing theoretical support for long-term stability evaluation of underground rock masses.

     

/

返回文章
返回