Flood Frequency Analysis and Uncertainty Assessment Based on Bayesian MCMC Method
-
摘要: 洪水设计值的计算和不确定性评估是水利工程规划和水资源管理的一个重要课题。以广义极值分布(GEV)作为洪水频率分布线型,通过基于Metropolis-Hastings抽样的贝叶斯马尔科夫链蒙特卡洛(MCMC)方法估计GEV分布参数和洪水设计值的后验概率分布,据此推求不同重现期条件下洪水设计值的点估计和区间估计。结果表明:贝叶斯MCMC方法的参数拟合效果与极大似然估计法相当,但由于其后验概率分布包含参数估计引起的不确定性,在洪水设计值不确定性评估上更有优势;贝叶斯MCMC方法得到的置信区间上限与估计值的距离大于下限与估计值的距离,这种不对称性相比于传统方法所得结果更贴近于实际,使得洪水频率分析结果的可靠性进一步提高。Abstract: The calculation of design flood value and uncertainty assessment is an important subject of hydraulic engineering planning and water resources management. Taking thegGeneralized extreme value (GEV) distribution as the flood frequency distribution line type, the Bayesian Markov chain Monte Carlo (MCMC) method based on Metropolis-Hastings algorithm was employed to evaluate the GEV distribution parameters and posterior probability distributions of the design flood values, and the point estimations and interval estimations of flood design values under different return periods were deduced. The results show that the effect of parameter fitting with Bayesian MCMC method is similar to that from the maximum likelihood estimation (MLE). However, because the posterior probability distribution contains the uncertainty caused by parameter estimation, Bayesian MCMC methods has more advantages in evaluation of the uncertainty of flood design value. The length between upper confidence limits and estimated values are greater than that of the lower confidence limits and estimated values, this asymmetry is more realistic than that from the traditional method, which further improves the reliability of the flood frequency analysis results.
-
Keywords:
- flood frequency analysis /
- GEV distribution /
- MCMC /
- Bayesian theory
-
-
[1] HAN S, COULIBALY P. Bayesian flood forecasting methods:a review[J]. Journal of Hydrology, 2017, 551:340-351.
[2] LIANG Z, CHANG W, LI B. Bayesian flood frequency analysis in the light of model and parameter uncertainties[J]. Stochastic Environmental Research and Risk Assessment, 2012, 26(5):721-730.
[3] 史道济. 实用极值统计方法[M]. 天津:天津科学技术出版社,2006. [4] COLES S. An Introduction to Statistical Modeling of Extreme Values[M]. London:Springer, 2001.
[5] JENKINSONA F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements[J]. Quarterly Journal of the Royal Meteorological Society, 1955, 81(348):158-171.
[6] PRESCOTT P, WALDEN A T. Maximum likelihood estimation of the parameters of the generalized extreme value distribution[J]. Biometrika, 1980, 67(3):723-724.
[7] 鲁帆, 严登华. 基于广义极值分布和Metropolis-Hastings抽样算法的贝叶斯MCMC洪水频率分析方法[J]. 水利学报, 2013, 44(8):942-949. [8] MARTINS E S, STEDINGER J R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data[J]. Water Resources Research, 2000, 36(3):737-744.
[9] 梁忠民, 戴荣, 李彬权. 基于贝叶斯理论的水文不确定性分析研究进展[J]. 水科学进展, 2010, 21(2):274-281. [10] 张冬冬, 鲁帆, 刘少华. 基于贝叶斯理论的洪水频率不确定性分析[J]. 中国农村水利水电, 2016(4):96-102. [11] KUCZERA G. Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference[J]. Water Resources Research, 1999, 35(5):1551-1557.
[12] O'CONNELL D R H, OSTENAA D A, LEVISH D R, et al. Bayesian flood frequency analysis with paleohydrologic bound data[J]. Water Resources Research, 2002, 38(5):11-16.
[13] 李景保, 郑云有, 高昌海, 等. 论湖南省水旱灾害的地理规律性[J]. 自然灾害学报, 2000, 9(4):115-120. [14] LIU Y, LU M, HUO X, et al. A Bayesian analysis of generalized pareto distribution of runoff minima[J]. Hydrological Processes, 2016, 30(3):424-432. 责任编辑:丁吉 -
期刊类型引用(2)
1. 孙烨,蒋京京,王纯杰. 广义极值回归模型下现状数据的贝叶斯估计. 广西师范大学学报(自然科学版). 2022(01): 82-90 . 百度学术
2. 王雪妮,蔡文君,李沛鸿,覃大静. 基于R软件的Bayesian MCMC法水文频率线型选择不确定性研究. 水电能源科学. 2021(11): 31-34 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 52
- HTML全文浏览量: 0
- PDF下载量: 3
- 被引次数: 6