Adaptive Parameter Selection Method Based on Total Variation Model
-
摘要: 针对全变差去噪模型中不能自适应调整正则项参数的缺点,基于Chambolle对偶算法,提出一种自适应对偶投影算法。通过构建全变差模型中的权重与正则项和逼近项之间的函数关系,根据不动点迭代理论,得出权重的更新准则。对于模型中新引入的参数选取问题,根据多元线性回归模型拟合出新参数的选取模型,通过显著性检验,验证了该拟合模型的有效性。实验结果表明,该算法能有效改善去噪效果。Abstract: As for the disadvantage of not being able to adaptively adjust the regularization parameters in the total variation model, an adaptive dual projection algorithm was proposed based on Chambolle's dual algorithm. With the fixed point iteration theory, the relationship among weights, regularization term and approximation term was built, and the update criterion of weight was obtained. For the proposed parameter selection problem, the multiple linear regression model was used to fit the selection model of new parameter. The potential of the proposed method was verified through the significance test. The experimental results show that the algorithm is effective in improving the denoising effect.
-
-
[1] RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1):259-268.
[2] MEYER Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations:the Fifteenth Dean Jacqueline B Lewis Memorial Lectures[M]. Providence, Rhode Island, American Mathematical Society, 2001:22-122.
[3] BUADES A, COLL B, MOREL J M. Image denoising by non-local averaging[C]//IEEE International Conference on Acoustics. Philadelphia, 2005.
[4] BRAS N B, BIOUCAS-DIAS J, MARTINS RC. An alternating direction algorithm for total variation reconstruction distributed parameters[J]. IEEE Transactionson ImageProcessing, 2012, 21(26):3004-3016.
[5] ZHANG X, BURGER M, OSHER S. A unified primal-dual algorithm framework based on bregman iteration[J]. Journal of Scientific Computing, 2011, 46(1):20-46.
[6] XU X, BU T. An adaptive parameter choosing approach for regularization model[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(8):1859013.
[7] DONG Y, HINTERMÜLLER M, RINCON-CAMACHO M M. Automated regularization parameter selection in multi-scale total variation models for image restoration[J]. Journal of Mathematical Imaging and Vision, 2011, 40(1):82-104.
[8] CLASON C, JIN B, KUNISCH K. A duality-based splitting method for е l1-TV image restoration with automatic regularization parameter choice[J]. SIAM Journal on Scientific Computing, 2010, 32(3):1484-1505.
[9] WEN Y W, CHAN R H. Parameter selection for total-variation-based image restoration using discrepancy principle[J]. IEEE Transactions on Image Processing, 2011, 21(4):1770-1781.
[10] CHAN T, MARQUINA A, MULET P. High-order total variation-based image restoration[J]. SIAM Journal on Scientific Computing, 2000, 22(2):503-516.
[11] LIU P.Adaptive image processing:a bilevel structure learning approach for mixed-order total variation regularizers[EB/OL].[2019-03-19]. hattp://arxiv. org/abs/1903. 06911V1.
[12] 常璐璐,张化朋.基于自适应全变差的B超图像快速去噪算法[J].南京邮电大学学报(自然科学版), 2016, 36(5):50-55. [13] CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20(1/2):89-97.
[14] CHAMBOLLE A. Total variation minimization and a class of binary MRF models[C]//International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer, Berlin, Heidelberg, 2005:136-152.
[15] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of mul tipliers[J]. Foundations and Trends in Machine learning, 2011, 3(1):1-4.
[16] 李旭超,宋博.改进的正则化模型在图像恢复中的应用[J].中国图象图形学报, 2014, 19(12):1730-1742. [17] 李旭超,宋博,甘良志.改进的迭代算法在图像恢复正则化模型中的应用[J].电子学报, 2015, 43(6):1152-1159. -
期刊类型引用(0)
其他类型引用(2)
计量
- 文章访问数: 65
- HTML全文浏览量: 0
- PDF下载量: 4
- 被引次数: 2