A Study of Thermal Dissolution of Coal and Utilization of its Soluble Fraction
-
摘要: 煤的热溶技术为煤的高效、洁净利用提供了新途径。介绍煤热溶技术及煤热溶物应用研究方面的进展,综述溶剂、温度、添加剂及煤样预处理等对煤热溶性能的影响;基于煤催化裂解的研究基础,对煤的催化热溶及催化剂选择进行探讨;依据煤热溶物热塑性高、黏结性强、灰分含量低以及反应活性高等特性,探讨其在配煤炼焦、煤基燃料及煤基纳米碳材料等方面的应用。结果表明:溶剂、温度和添加剂可破坏煤大分子结构中非共价键和弱共价键,松弛煤网络骨架结构,进而促进煤的热溶,提高煤热溶物产率。其中:极性溶剂特别是如吲哚等含氮有机化合物,能够诱导煤大分子网络结构松弛;适宜的热溶温度可不同程度断裂煤中非共价键和弱共价键;添加剂可破坏煤的缔合结构。酸碱预处理可部分脱除煤中灰分、破坏煤大分子结构中的离子键,水热处理可部分破坏煤中氢键。Abstract: The thermal dissolution (TD) of coal provides a new way for the high efficient and clean utilization of coal. The development of TD technology of coal and the utilizations of thermal dissolution soluble fraction (TDSF)wereintroduced.Theeffectsofsolvent,temperature,additiveandpretreatmentofcoalontheTDperformances of coal were reviewed. The catalytic TD of coal and its catalyst selection were also discussed. In addition, according to the characteristics of high thermoplasticity, strong caking property, low ash content and high reactivity of TDSF, its utilizations in the coke-making of blending coal, the preparation of coal-based fuel and coal-based nano carbon materials were also discussed. It has suggested that suitable solvent, TD temperature and additive can break non-covalent and weak covalent bonds, relax macromolecular network structure of coal, thus promoting the TD of coal, and improving the yield of TDSF. Polar solvent, especially for organic compounds containing nitrogen such as indole, can relax the macromolecular network structure of coal by induction. The non-covalent and weak covalent bonds in coal can be broken in different degrees at appropriate TD temperature. Additives can also disassociate the structure of coal. Acid and base treatment can remove partially mineral in coal, thus destroying some ionic bonds in coal. Hydrothermal pretreatment can break some hydrogen bonds in the coal.
-
Keywords:
- coal thermal dissolution /
- pretreatment /
- catalyst /
- TDSF utilization
-
-
[1] 李洪言, 赵朔, 林傲丹, 等. 2019年全球能源供需分析: 基于《BP世界能源统计年鉴(2020)》 [J]. 天然气与石油, 2020, 38(6): 122-130. [2] KAREN M S, JOHN B, THOMAS A, et al. Production of ultra clean coal: part I: dissolution behaviour of mineral matter in black coal toward hydrochloric and hydrofluoric acids[J]. Fuel Processing Technology, 2001, 70(3):171-192.
[3] RUBIERA F, ARENILLAS A, ARIAS B, et al. Combustion behaviour of ultra clean coal obtained by chemical demineralisation [J]. Fuel, 2003, 82(15/17):2145-2151.
[4] YOSHIDA T, TAKANOHASHI T, SAKANISHI K, et al. The effect of extraction condition on“HyperCoal” production (1): under room-temperature filtration[J]. Fuel, 2002, 81(11/12):1463-1469.
[5] 田原宇, 申曙光, 田亚峻, 等煤的可溶化技术与煤的化学族组成[J]. 太原理工大学学报, 2001(6):555-558. [6] YOSHIDA T, LI C, TAKANOHASHI T, et al. Effect of extraction condition on“HyperCoal”production (2): effect of polar solvents under hot filtration[J]. Fuel Processing Technology, 2004, 86(1):61-72.
[7] IINO M, TAKANOHASHI T, OBARA S, et al. Characterization of the extracts and residues from CS2-N-methyl-2-pyrrolidinone mixed solvent extraction[J]. Fuel, 1989, 68(12):1588-1593.
[8] KASHIMURA N, TAKANOHASHI T, SAITO I. Upgrading the solvent used for the thermal extraction of sub-bituminous coal [J]. Energy & Fuels, 2006, 20(5):2063-2066.
[9] MASAKI K, YOSHIDA T, LI C, et al. The effects of pretreatment and the addition of polar compounds on the production of “HyperCoal”from subbituminous coals[J]. Energy & Fuels, 2004, 18(4):995-1000.
[10] SHUI H F, ZHOU Y, LI H P, et al. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel, 2013, 108:385-390.
[11] RAHMAN M, SAMANTA A, GUPTA R. Production and characterization of ash-free coal from low-rank Canadian coal by solvent extraction[J]. Fuel Processing Technology, 2013, 115:88-98.
[12] 石智杰, 张胜振, 邢凌燕, 等. 低阶煤在煤液化衍生油中的热萃取性能[J]. 煤炭转化, 2009, 32(1):34-39. [13] 崔咏梅, 胡永琪, 许永权, 等. 热萃取小康庄1/3焦煤制备超纯煤的工艺研究[J]. 煤炭科学技术, 2014, 42(1):121-124. [14] KUZNETSOV P N, KAMENSKIY E S, KUZNETSOVA L I. Solvolysis of bituminous coal in coal and petroleum-derived commercial solvents[J]. ACS Omega, 2020, 5(24):14384-14393.
[15] MIURA K, SHIMADA M, MAE K, et al. Extraction of coal below 350℃ in flowing non-polar solvent[J]. Fuel, 2001, 80(11): 1573-1582.
[16] TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, et al. Characterisation of HyperCoals from coals of various ranks[J]. Fuel, 2008,87(4/5):592-598.
[17] KIM S D, WOO K J, JEONG S K, et al. Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone[J]. Korean Journal of Chemical Engineering, 2008, 25(4):758-763.
[18] 潘春秀, 刘华龙, 祝婉婉, 等. 神府次烟煤在不同温度下的热溶产物表征[J]. 燃料化学学报, 2015, 43(4):416-421. [19] CEN Z K. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals[J]. Energy Conversion and Management, 2013, 71:84-91.
[20] CHEN H, LI J W, LEI Z, et al. Microwave-assisted extraction of Shenfu coal and its macromolecule structure[J]. Mining Science & Technology, 2009(1):19-24.
[21] 张良平, 胡松, 张宇博, 等. 温度对神府煤微波辅助萃取影响的实验研究[J]. 煤炭转化, 2019, 42(1):9-14. [22] 陈红, 李建伟, 逯俊庆, 等. 微波辅助萃取煤的实验研究[J]. 煤化工, 2007, 35(4):52-55. [23] 贾梅, 李建伟, 贾建成, 等. 煤焦油对煤微波辅助萃取率的影响研究[J]. 煤炭转化, 2011, 34(3):54-56. [24] 水恒福. 添加剂对煤的缔合结构影响[J]. 安徽工业大学学报(自然科学版), 2003, 20(4):259-264. [25] TAKAHASHI K, NORINAGA K, MASUI Y, et al. Effect of addition of various salts on coal extraction with carbon disulfide/ N-methyl-2-pyrrolidinone mixed solvent[J]. Energy & Fuels, 2001, 15(1):141-146.
[26] 戈军, 郭龙德, 郭智慧, 等. 溶剂与溶胀促进剂对神华煤溶胀行为的影响[J]. 化工进展, 2010, 29(10):1885-1889. [27] SHUI H F, MA X Q, YANG L, et al. Thermolysis of biomass-related model compounds and its promotion on the thermal dissolution of coal[J]. Journal of the Energy Institute, 2017, 90(3):418-423.
[28] JIAN Y M, LI X, ZHU X Q, et al. Interaction between low-rank coal and biomass during degradative solvent extraction[J].Journal of Fuel Chemistry and Technology, 2019, 47(1):14-22.
[29] ZOU D H, YANG X, SHUI H F, et al. Liquefaction of thermal extracts from co-thermal dissolution of a sub-bituminous coal with lignin and reusability of Ni-Mo-S/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1):23-29.
[30] VASSILEV S V, TASCON J M D. Methods for characterization of inorganic and mineral matter in coal: a critical overview[J]. Energy Fuels, 2003, 17(2):271-281.
[31] BORTHAKUR S M C. Effects of alkali treatment on ash and sulphur removal from Assam coal[J]. Fuel Processing Technology, 2004, 85(2/3):93-101.
[32] BEHERA S K, CHAKRABORTY S, MEIKAP B C. Chemical demineralization of high ash Indian coal by using alkali and acid solutions[J]. Fuel, 2017, 196:102-109.
[33] MASAKI K, KASHIMURA N, TAKANOHASHI T, et al. Effect of pretreatment with carbonic acid on“HyperCoal” (ash-free coal) production from low-rank coals[J]. Energy & Fuels, 2005, 19(5):144-151.
[34] LI C, TAKANOHASHI T, SAITO I, et al. Elucidation of mechanisms involved in acid pretreatment and thermal extraction during ashless coal production[J]. Energy & Fuels, 2004, 18(1):97-101.
[35] IINO M, TAKANOHASHI T, LI C, et al. Increase in extraction yields of coals by water treatment[J]. Energy& Fuels, 2004, 18(5):1414-1418.
[36] MORIMOTO M, NAKAGAWA H, MIURA K. Low rank coal upgrading in a blow of hot water[J]. Energy & Fuels, 2009, 23(9): 4533-4539.
[37] NAKAGAWA H, NAMBA A, BOHLMANN M, et al. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst[J]. Fuel, 2004, 83(6):719-725.
[38] SHUI H F, ZHANG X Y, WANG Z C, et al. Modification of a sub-bituminous coal by hydrothermal treatment with the addition of CaO: extraction and caking properties[J]. Energy & Fuels, 2012, 26:2928-2933.
[39] SHUI H F, LI H P, CHANG H T, et al. Modification of sub-bituminous coal by steam treatment: caking and coking properties[J]. Fuel Processing Technology, 2011, 92(12):2299-2304.
[40] SHUI H F, WANG Z C, WANG G Q. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent [J]. Fuel, 2006, 85(12/13):1798-1802.
[41] 赵欢, 王鑫, 焦忠泽, 等. Mo-Ni催化下褐煤热溶物的生成机理[J]. 沈阳航空航天大学学报, 2020(3):33-40. [42] FENG J, XUE X Y, LI X H, et al. Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts[J]. Fuel Processing Technology, 2015, 130:96-100.
[43] WEI X Y, NI Z H, ZONG Z M, et al. Reaction of Di(1-naphthyl)methane over metals and metal-sulfur systems[J]. Energy & Fuels, 2003, 17(3):652-657.
[44] KANG S G, ZONG Z M, SHUI H F, et al. Comparison of catalytic hydroliquefaction of Xiaolongtan lignite over FeS, FeS+S and SO42-/ZrO2[J]. Energy, 2011, 36(1):41-45.
[45] PINTO F, GULYURTLU I, LOBO L S. The effect of catalysts blending on coal hydropyrolysis[J]. Fuel, 1999, 78(7):761-768.
[46] 公旭中, 郭占成, 王志. Fe2O3对高变质程度脱灰煤热解反应性与半焦结构的影响[J]. 化工学报, 2009, 60(9):2321-2326. [47] KUKUSHKIN R G, BULAVCHENKO O A, KAICHEV V V, et al. Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters[J]. Applied Catalysis B Environmental, 2015, 163:531-538.
[48] FRAENKEL D, PRADHAN V R, TIERNEY J W, et al. Liquefaction of coal under mild conditions: catalysis by strong acids, iodine and their combination[J]. Fuel, 1991, 70(1):64-73.
[49] 朱晓苏. 煤炭直接液化高分散度固体酸催化剂的研制[J]. 煤炭转化, 2001(2):66-76. [50] WANG Z C, SHUI H F, ZHU Y N, et al. Catalysis of SO42-/ZrO2 solid acid for the liquefaction of coal[J]. Fuel, 2009, 88(5):885- 889.
[51] 吴会会. 锡林郭勒褐煤催化热溶及其热溶物加氢液化研究[D]. 马鞍山: 安徽工业大学, 2020:21-45. [52] TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, et al. Characterisation of hyper-coals from coals of various ranks[J]. Fuel, 2008, 87(4/5):592-598.
[53] TAKANOHASHI T, SHISHIDO T, SAITO I. Effects of hyper-coal addition on coke strength and thermoplasticity of coal blends [J]. Energy & Fuels, 2008, 22(3):1779-1783.
[54] SHUI H F, ZHAO W J, SHAN C J, et al. Caking and coking properties of the thermal dissolution soluble fraction of a fat coal [J]. Fuel Processing Technology, 2014, 118:64-68.
[55] 朱亚明, 唐帅, 赵雪飞, 等. 长焰煤热解萃取物对单种煤成焦性的影响[J]. 燃料与化工, 2016, 47(1):1-3,11. [56] 叶鹏超. 锡林郭勒褐煤的热溶及其热溶物的配煤炼焦研究[D]. 马鞍山: 安徽工业大学, 2016:75-76. [57] 董旭东, 纪同森, 刘树梅, 等. 捣固炼焦对焦炭冷、 热态强度的影响[J]. 燃料与化工, 2005(6):10-11. [58] OKUYAMA N, KOMATSU N, SHIGEHISA T, et al. Study on the hypercoal process for brown coal upgrading[J].International Journal of Coal Preparation and Utilization, 2005, 25(4):295-311.
[59] KOYANO K, TAKANOHASHI T, SAITO I. Catalytic hydrogenation of hypercoal (ashless coal) and reusability of catalyst[J]. Energy Fuels, 2009, 23(7):3652-3657.
[60] SHUI H F, ZHU W W, WANG W W, et al. Thermal dissolution of lignite and liquefaction behaviors of its thermal dissolution soluble fractions[J]. Fuel, 2015, 139(1):516-522.
[61] SHUI H F, YANG L, SHUI T, et al. Hydro-liquefaction of thermal dissolution soluble fraction of Shenfu subbituminous coal and reusability of catalyst on the hydro-liquefaction[J]. Fuel, 2014, 115:227-231.
[62] 王化军, 张国文, 胡文韬, 等. 煤基纳米碳材料制备技术的研究与应用[J]. 选煤技术, 2015(6):89-93. [63] MOOTHI K, IYUKE S E, MEYYAPPAN M, et al. Coal as a carbon source for carbon nanotube synthesis[J]. Carbon, 2012, 50(8):2679-2690.
[64] 邱介山, 王琳娜, 周颖. 由脱灰煤制备富勒烯[J]. 化工学报, 2002(11):1117-1121. [65] 王茂章, 李峰.由煤或焦炭制备纳米碳质材料的新进展[J]. 新型炭材料, 2005(1):71-82. -
期刊类型引用(7)
1. 徐静,肖国勇,胡耀云,迟海军. 低阶煤热溶萃取实验在化工专业实习中的设计与探究. 山东化工. 2025(02): 245-247 . 百度学术
2. 赵云鹏,吴法鹏,仇乐乐,肖剑,曹景沛,魏贤勇. 昭通褐煤催化热溶解聚及其可溶物组成和结构特征. 洁净煤技术. 2024(01): 10-21 . 百度学术
3. 任宇瑶,周国莉,刘豪杰,滕道光,曹亦俊,邢宝林,李鹏. 昭通褐煤氨解可溶化转化及热溶物中氧和氮的赋存形态. 燃料化学学报(中英文). 2024(05): 619-629 . 百度学术
4. 张恺,王知彩,雷智平,任世彪,康士刚,颜井冲,李占库,水恒福. 锡林郭勒褐煤在超临界水和不同气氛下的液化性能. 煤炭转化. 2022(01): 43-49 . 百度学术
5. 曹志,徐靖,马文娜,张小勇. 不同配比弱黏结性煤参与配煤炼焦的研究. 安徽工业大学学报(自然科学版). 2022(02): 172-179 . 百度学术
6. 杨化松,杨文灯,李辉. 焦化烟火智能识别系统优化研究. 安徽冶金科技职业学院学报. 2022(02): 52-55 . 百度学术
7. 王祥曦,郭柱,李显,胡振中,李致煜,李建,刘景梅,钟梅,罗光前,姚洪. 煤的热溶萃取残渣制备高比表活性炭研究. 工程热物理学报. 2022(10): 2565-2573 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 253
- HTML全文浏览量: 9
- PDF下载量: 25
- 被引次数: 14