高级检索

幂零元的单边零可交换性

One-sided Commutativity of Nilpotent Elements at Zero

  • 摘要: 定义研究左和右幂零可逆环,这两类环与可逆环的单边幂零结构密切相关,是CNZ环的一个真子类。证明环R是可逆环当且仅当R是半素的左幂零可逆环。研究左幂零可逆环的扩张性质,主要证明了以下结果: R是左幂零可逆环当且仅当A (R,α)是左幂零可逆环; Armendariz环R是左幂零可逆环当且仅当Rx是左幂零可逆环;若右Ore环R是左幂零可逆的,则R的经典右商环Q是左幂零可逆的。

     

    Abstract: The concepts of left and right nilpotent reversible rings are defined and studied, which are closely related to the one-sided nilpotent structures of reversible rings, and are a proper subclass of CNZ rings. It is shown that a ring R is reversible if and only if R is semiprime and left nilpotent reversible ring. Various extension properties of left nilpotent reversible rings are studied, the following results are mainly proved:A ring R is left nilpotent reversible if and only if A(R,α) is left nilpotent reversible. If R is an Armendariz ring, then R is left nilpotent reversible if and only if Rx is left nilpotent reversible. If a right Ore ring R is a left nilpotent reversible ring, then its classical right quotient ring Q is left nilpotent reversible.

     

/

返回文章
返回