高级检索

GO/PVA阵列结构吸收体高效光蒸汽转化

解翰林, 韩威, 闫鑫, 高纪, 杨建明, 张贺新, 王书唯

解翰林, 韩威, 闫鑫, 高纪, 杨建明, 张贺新, 王书唯. GO/PVA阵列结构吸收体高效光蒸汽转化[J]. 安徽工业大学学报(自然科学版), 2022, 39(1): 25-30. DOI: 10.3969/j.issn.1671-7872.2022.01.005
引用本文: 解翰林, 韩威, 闫鑫, 高纪, 杨建明, 张贺新, 王书唯. GO/PVA阵列结构吸收体高效光蒸汽转化[J]. 安徽工业大学学报(自然科学版), 2022, 39(1): 25-30. DOI: 10.3969/j.issn.1671-7872.2022.01.005
XIE Hanlin, HAN Wei, YAN Xin, GAO Ji, YANG Jianming, ZHANG Hexin, WANG Shuwei. GO/PVA Array Structure Absorber for Efficient Solar Generation of Water Vapor[J]. Journal of Anhui University of Technology(Natural Science), 2022, 39(1): 25-30. DOI: 10.3969/j.issn.1671-7872.2022.01.005
Citation: XIE Hanlin, HAN Wei, YAN Xin, GAO Ji, YANG Jianming, ZHANG Hexin, WANG Shuwei. GO/PVA Array Structure Absorber for Efficient Solar Generation of Water Vapor[J]. Journal of Anhui University of Technology(Natural Science), 2022, 39(1): 25-30. DOI: 10.3969/j.issn.1671-7872.2022.01.005

GO/PVA阵列结构吸收体高效光蒸汽转化

基金项目: 

江苏省自然科学基金项目(BK20210894);安徽工业大学青年拔尖人才资助项目(DT19200007);企业委托项目- 养老健康与环保节能材料研发(RH2000001572);辽宁省教育厅青年科技人才项目(J2019046)

详细信息
    作者简介:

    解翰林(1995—),男,安徽六安人,硕士生,主要研究方向为光热转化材料的制备及其在水处理中的应用

  • 中图分类号: TK519

GO/PVA Array Structure Absorber for Efficient Solar Generation of Water Vapor

  • 摘要: 将氧化石墨烯(GO)均匀分散于聚乙烯醇(PVA)水溶液中,烘干制备出表面平整的GO/PVA膜。利用激光刻蚀工艺对GO/PVA膜的表面进行处理得到LT-GO/PVA膜,研究LT-GO/PVA膜的微观结构、物理性能及其作为光热转化器件的性能。结果表明:LT-GO/PVA膜表面形成了3D多孔阵列结构,可促进太阳光的吸收,减少漫反射造成的能量损耗;LT-GO/PVA膜表面开始从亲水性向疏水性转变,可促进水的快速蒸发与分离,在1 kW/m2的光强度下,其光热水蒸发速率为1.827 kg/(m2·h),光热转化效率为89.4%。
    Abstract: The graphene oxide (GO) was uniformly dispersed in a polyvinyl alcohol (PVA) aqueous solution, and dried to prepare a GO/PVA film with a smooth surface. The surface of GO/PVA film was treated by laser etching process to obtain LT-GO/PVA film, and the microstructure, physical properties of LT-GO/PVA film and its performance as a solar-thermal conversion device were investigated. The results show that the surface of LT-GO/PVA film forms a 3D porous array structure, which can promote the absorption of sunlight and reduce the energy loss caused by diffuse reflection. The surface of LT-GO/PVA film starts to change from hydrophilic to hydrophobic, which can enhance the evaporation and separation of water from LT-GO/PVA film surface. Under the light intensity of 1 kW/m2, the evaporation rate of water is 1.827 kg/(m2·h), and the light-to-heat conversion efficiency is 89.4%.
  • [1]

    TU F, LEE D. Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties[J]. Journal of the American Chemical Society, 2014, 136(28): 9999-10006.

    [2]

    WANG Z J, WANG Y, LIU G J. Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric[J]. Abstr Pap Am Chem S, 2016, 252: 1291-1294.

    [3]

    KIM J U, LEE S, KANG S J, et al. Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion[J]. Nanoscale, 2018, 10(46): 21555-21574.

    [4]

    LI Y, HONG W P, LI H R, et al. Solar absorber with tunable porosity to control the water supply velocity to accelerate water evaporation[J]. Desalination, 2021, 511: 115113.

    [5]

    YANG H C, ZHONG W, HOU J, et al. Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation[J]. Journal of Membrane Science, 2017, 523: 1-7.

    [6]

    ZHANG H, XIE H, HAN W, et al. Graphene oxide-reduced graphene oxide Janus membrane for efficient solar generation of water vapor[J]. ACS Appl Nano Mater, 2021, 4(2): 1916-1923.

    [7]

    FU Y, WANG G, MING X, et al. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation[J]. Carbon, 2018, 130: 250-256.

    [8]

    DEMERLIS C C, SCHONEKER D R. Review of the oral toxicity of polyvinyl alcohol (PVA)[J]. Food Chem Toxicol, 2003, 41(3): 319-326.

    [9]

    ZHOU X Y, ZHAO F, GUO Y H, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energ Environ Sci, 2018, 11(8): 1985-1992.

    [10]

    SONG L, ZHANG X F, WANG Z, et al. Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation[J]. Desalination, 2021, 507: 115024.

    [11]

    WU X F, XIE Y Y, XUE C, et al. Preparation of PVA-GO composite hydrogel and effect of ionic coordination on its properties [J]. Mater Res Express, 2019, 6(7): 075306.

    [12]

    YU Y R, SHU Y, YE L. In situ crosslinking of poly(vinyl alcohol)/graphene oxide-glutamic acid nanocomposite hHydrogel as microbial carrier: intercalation structure and its wastewater treatment performance[J]. Chem Eng J, 2018, 336: 306-314.

    [13]

    HU X Z, XU W C, ZHOU L, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Adv Mater, 2017, 29(5): 1604031.

    [14]

    ITO Y, TANABE Y, HAN J, et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization[J]. Adv Mater, 2015, 27(29): 4302-4307.

    [15]

    GUO Z Z, WANG G, MING X, et al. PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization[J]. Acs Appl Mater Inter, 2018, 10(29): 24583-24589.

计量
  • 文章访问数:  68
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08
  • 网络出版日期:  2022-09-25
  • 发布日期:  2022-01-29

目录

    /

    返回文章
    返回