高级检索
邵翠萍,王文杰,程育汶. Ti基MXenes表面终端氮气还原机理的第一性原理研究[J]. 安徽工业大学学报(自然科学版),xxxx,x(x):x-xx. doi: 10.12415/j.issn.1671-7872.23160
引用本文: 邵翠萍,王文杰,程育汶. Ti基MXenes表面终端氮气还原机理的第一性原理研究[J]. 安徽工业大学学报(自然科学版),xxxx,x(x):x-xx. doi: 10.12415/j.issn.1671-7872.23160
SHAO Cuiping, WANGWenjie, CHENG Yuwen. First Principles Study on Nitrogen Reduction Mechanism at the Terminal Surface of Ti Based two-dimensional Transition Metal Carbides[J]. Journal of Anhui University of Technology(Natural Science). DOI: 10.12415/j.issn.1671-7872.23160
Citation: SHAO Cuiping, WANGWenjie, CHENG Yuwen. First Principles Study on Nitrogen Reduction Mechanism at the Terminal Surface of Ti Based two-dimensional Transition Metal Carbides[J]. Journal of Anhui University of Technology(Natural Science). DOI: 10.12415/j.issn.1671-7872.23160

Ti基MXenes表面终端氮气还原机理的第一性原理研究

First Principles Study on Nitrogen Reduction Mechanism at the Terminal Surface of Ti Based two-dimensional Transition Metal Carbides

  • 摘要: 基于第一性原理,计算二维过渡金属碳氮化物(MXenes)Ti2CT2和Ti3C2T2 (T=O*或OH*)催化剂表面N2吸附前后的态密度(DOS)、反应中间结构的吉布斯自由能(ΔG)、差分电荷(CDD)、功函数φ及活化能(Ea),探究OH*终端MXene表面发生N2还原反应(NRR)反应的机制。结果发现:N2在Ti2CO2和Ti3C2O2表面发生物理吸附(∆q≈0 e),在Ti2C(OH)2和Ti3C2(OH)2表面发生化学吸附(∆q>0.2 e),Ti2CO2 (ηNRR=2.13 V)和Ti3C2O2 (ηNRR=2.03 V)催化剂由于过高的加氢过电位(ηNRR)而不利于发生NRR;Ti2C(OH)2和Ti3C2(OH)2表面可在起始步骤N2吸附时提供H原子,并通过Enzymatic机制发生NRR,相应的ηNRR分别降至0.29,0.38 V;此外,ηNRR与功函数φ存在ηNRR=0.44φ−0.71函数关系,线性相关系数(R2)为0.97,两者存在较大线性相关性;在*OH终端与*O终端表面N 2p轨道和O 2p轨道能级杂化强度不同,导致OH* MXene的NRR活性不同。由此认为,N2在Ti2C(OH)2和Ti3C2(OH)2表面的N2通过“N2+2*H=*N2H2”进行吸附,然后沿Enzymatic机制进行NRR。

     

    Abstract: The hydrogenation mechanisms of N2 reduction reaction (NRR) on Ti2CT2 and Ti3C2T2 (T=O* or OH*) MXenes are studied by first-principles study. And the DOS of N2 adsorption, the Gibbs free energy of the reaction intermediate structure (ΔG), charge density difference(CDD), work function and activation energies (Ea) are calculated to explore the new mechanism of NRR reaction on the surface of OH * terminal MXene. The results show that N2 undergoes physical adsorption on Ti2CO2 and Ti3C2O2 surfaces (∆q≈0 e), while chemical adsorption occurs on Ti2C(OH)2 and Ti3C2(OH)2 surfaces (∆q>0.2 e), Ti2CO2 and Ti3C2O2 are do not favor NRR due to high ηNRR. While Ti2C(OH)2 and Ti3C2(OH)2 can catalyze NRR by donating their surface H at initial steps and then via enzymatic mechanism, with the corresponding ηNRR of 0.29 V and 0.38 V, respectively. Moreover, the calculated ηNRR can be used as a function of φ: ηNRR=0.44φ−0.71, where the correlation coefficient (R2) is 0.97, showing a strong linear relationship between overpotential and work function. The strength and hybridization energy level of the N 2p orbitals and O 2p orbitals on Tin+1CnT2 and Tin+1Cn(OH)2 are different during NRR, and delivering different catalytic activity for NRR. Finally, it concluded that the N2 adsorption on Ti2C(OH)2 and Ti3C2(OH)2 may via “N2+2*H=*N2H2” at initial steps and then along enzymatic hydrogenation mechanism.

     

/

返回文章
返回