Citation: | CHENG Tong, WEI Rufei, QIAN Zhangxiu, REN Caixuan, LONG Hongming. Distribution of Zn Element in Blast Furnace and Its Influence on Coke Properties[J]. Journal of Anhui University of Technology(Natural Science). DOI: 10.12415/j.issn.1671-7872.24140 |
Using a stepwise heating blast furnace simulation experiment, the reduction and softening-melting processes of iron ore were simulated to analyze the reduction and volatilization behavior of zinc under different charging methods, as well as its distribution within the blast furnace and its impact on coke performance. The results indicate that the regardless of whether ZnO blocks are introduced through furnace top charging or tuyere charging, zinc primarily accumulates in furnace top dust ash and coke, with extremely low content in molten iron. When ZnO blocks are introduced via furnace top charging, the zinc content in furnace top dust ash is comparable to that in coke. When ZnO blocks are introduced through tuyere charging, the zinc content in furnace top dust ash significantly exceeds that in coke.The primary reason is that zinc entering through the tuyere undergoes rapid high-temperature reduction, after which zinc vapor quickly penetrates the burden layer to reach the furnace top. Due to its short residence time in coke and iron ore, zinc does not accumulate significantly in coke.Zinc exhibits a catalytic effect on coke solution loss, leading to increased coke reactivity and decreased post-reaction strength. This is mainly attributed to zinc promoting the decomposition of ketonic groups and the generation of CO, which subsequently alters coke reactivity and post-reaction strength.
[1] |
罗国立, 贾中帅, 史培阳. 包钢高炉瓦斯灰中钾锌铅元素的提取研究[J]. 中国有色冶金, 2024, 53(4):113−124.
LUO G L, JIA Z S, SHI P Y. Study on extraction of potassium, zinc and lead from blast furnace gas ash of Baotou Steel[J]. China Nonferrous Metallurgy, 2024, 53(4):113−124.
|
[2] |
辛莹娟, 蒋绪, 张静, 等. 钢铁厂含铁尘泥处理碳质还原剂选择性研究[J]. 工业加热, 2015, 44(4):36−39. doi: 10.3969/j.issn.1002-1639.2015.04.012
XIN Y J, JIANG X, ZHANG J, et al. Study on the selective of carbonaceous reductant in the treatment of iron-bearing dust and sludge obtained from steel plants[J]. Industrial Heating, 2015, 44(4):36−39. doi: 10.3969/j.issn.1002-1639.2015.04.012
|
[3] |
尹慧超, 张建良, 王传琳. 国丰1号1 780 m3高炉锌平衡的研究[J]. 炼铁, 2009, 28(3):48−50.
YIN H C, ZHANG J L, WANG C L. Study on zinc balance in No. 1 1 780 m3 blast furnace of Guofeng iron and steel Co. , Ltd[J]. Ironmaking, 2009, 28(3):48−50.
|
[4] |
易博达. 含锌粉尘协同还原及高效分离基础研究[D]. 鞍山: 辽宁科技大学, 2023.
|
[5] |
周进东, 李九林, 竺龙. 锌对高炉软熔带性能及滴落带锌收入量的影响[J]. 武汉科技大学学报, 2020, 43(4):241−246.
ZHOU J D, LI J L, ZHU L. Effects of zinc on the properties of blast furnace cohesive zone and zinc accumulation in dropping zone[J]. Journal of Wuhan University of Science and Technology, 2020, 43(4):241−246.
|
[6] |
任毅超, 梁红星. 浅议锌对高炉的危害及控制[J]. 甘肃冶金, 2019, 41(5):16−17, 22. doi: 10.3969/j.issn.1672-4461.2019.05.005
REN Y C, LIANG H X. Discussion on the harm and control of zinc to blast furnace[J]. Gansu Metallurgy, 2019, 41(5):16−17, 22. doi: 10.3969/j.issn.1672-4461.2019.05.005
|
[7] |
YANG X F, CHU M S, SHEN F M, et al. Mechanism of zinc damaging to blast furnace tuyere refractory[J]. Acta Metallurgica Sinica (English Letters), 2009, 22(6):454−460. doi: 10.1016/S1006-7191(08)60123-4
|
[8] |
VAN HERCK P, VANDECASTEELE C, SWENNEN R, et al. Zinc and lead removal from blast furnace sludge with a hydrometallurgical process[J]. Environmental Science & Technology, 2000, 34(17):3802−3808.
|
[9] |
ESEZOBOR D E, BALOGUN S A. Zinc accumulation during recycling of iron oxide wastes in the blast furnace[J]. Ironmaking & Steelmaking, 2006, 33(5):419−425.
|
[10] |
JIAO K X, ZHANG J L, LIU Z J, et al. Circulation and accumulation of harmful elements in blast furnace and their impact on the fuel consumption[J]. Ironmaking & Steelmaking, 2017, 44(5):344−350.
|
[11] |
焦克新, 张建良, 左海滨, 等. 锌在高炉内渣铁中溶解行为计算分析[J]. 东北大学学报(自然科学版), 2014, 35(3):383−387. doi: 10.3969/j.issn.1005-3026.2014.03.018
JIAO K X, ZHANG J L, ZUO H B, et al. Calculation analysis of zinc dissolution behaviors of the slag- iron in blast furnaces[J]. Journal of Northeastern University (Natural Science), 2014, 35(3):383−387. doi: 10.3969/j.issn.1005-3026.2014.03.018
|
[12] |
马超, 李东涛, 赵鹏, 等. 焦肥煤配比对顶装和捣固焦性能的影响[J]. 中国冶金, 2020, 30(4):6−11.
MA C, LI D T, ZHAO P, et al. Influence of coking coal and fat coal ratio on performance of top-charging coke and stamping coke[J]. China Metallurgy, 2020, 30(4):6−11.
|
[13] |
周晓佳. 氯元素对高炉内焦炭气化反应过程的影响[D]. 唐山: 华北理工大学, 2020.
|
[14] |
李星志, 郑镇鹏, 赵财波. 分析高炉中碱金属和锌的循环及危害控制措施[J]. 中国金属通报, 2022(9):234−236. doi: 10.3969/j.issn.1672-1667.2022.09.077
LI X Z, ZHENG Z P, ZHAO C B. The circulation of alkali metals and zinc in blast furnace and its hazard control measures are analyzed[J]. China Metal Bulletin, 2022(9):234−236. doi: 10.3969/j.issn.1672-1667.2022.09.077
|
[15] |
张磊, 杨斌, 张国波, 等. 酒钢7号高炉有害元素分析及操作对策[J]. 炼铁, 2022, 41(4):53−56.
ZHANG L, YANG B, ZHANG G B, et al. Analysis of harmful elements in Jiuquan steel No. 7 BF and operational solution[J]. Ironmaking, 2022, 41(4):53−56.
|
[16] |
王阿朋, 张越强, 沈龙龙. 马钢B高炉炉役后期有害元素分析与控制[J]. 中国钢铁业, 2023(5):46−50.
WANG A/E/E P, ZHANG Y Q, SHEN L L. Analysis and control of harmful elements in B blast furnace of Maanshan Iron and Steel Co., Ltd[J]. China Steel, 2023(5):46−50.
|
[17] |
刘海彬. 凌钢5号高炉碱金属和锌负荷分析[J]. 冶金信息导刊, 2018, 55(6):18−21.
LIU H B. Analysis of alkali metal and zinc load in No. 5 BF of Lingyuan steel[J]. Metallurgical Information Review, 2018, 55(6):18−21.
|
[18] |
付式. 论铁矿石(烧结矿、球团矿)软化、熔化、滴落测试方法和基本参数的选择[J]. 烧结球团, 1989, 14(1):3−10.
FU S. Methods for softening, melting and dropping tests of iron ores (sinters and pellets)and their basic parameters[J]. Sintering and Pelletizing, 1989, 14(1):3−10.
|
[19] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 铁矿石 高温荷重还原软熔滴落性能测定方法: GB/T 34211—2017[S]. 北京: 中国标准出版社, 2017.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Determination method for high temperature load-bearing reduction softening and melting dripping properties of iron ores: GB/T 34211—2017[S]. Beijing: Standards Press of China, 2017.
|
[20] |
廖玉通, 王子宏, 赵秀华, 等. 铁矿石荷重软熔滴落性能的检测[J]. 柳钢科技, 2012(6):44−47.
LIAO Y T, WANG Z H, ZHAO X H, et al. Inspection of reflowing and dropping property under load of iron ore[J]. Liugang Technology, 2012(6):44−47.
|
[21] |
赵丽树, 张宝会, 赵佳顺, 等. 影响焦炭质量的因素及改进措施[J]. 煤化工, 2007, 35(4):25−26. doi: 10.3969/j.issn.1005-9598.2007.04.008
ZHAO L S, ZHANG B H, ZHAO J S, et al. Factors to affect coke quality and improvement measures[J]. Coal Chemical Industry, 2007, 35(4):25−26. doi: 10.3969/j.issn.1005-9598.2007.04.008
|
[22] |
赵小燕, 高贵平, 王东峰. 炼焦配煤技术的研究与应用进展[J]. 煤化工, 2024, 52(S1):34−40.
ZHAO X Y, GAO G P, WANG D F. Research and application progress of coal blending technology for coking[J]. Coal Chemical Industry, 2024, 52(S1):34−40.
|
[23] |
WANG W, WANG J, XU R S, et al. Influence mechanism of zinc on the solution loss reaction of coke used in blast furnace[J]. Fuel Processing Technology, 2017, 159:118−127. doi: 10.1016/j.fuproc.2017.01.039
|
[24] |
金家敏. 再论固体渗碳剂中碳酸盐的催化机理[J]. 金属热处理, 2000, 25(10):37−41. doi: 10.3969/j.issn.0254-6051.2000.10.018
JIN J M. Re-exploring on catalyzing mechanism of carbonate in pack carburizing[J]. Heat Treatment of Metals, 2000, 25(10):37−41. doi: 10.3969/j.issn.0254-6051.2000.10.018
|
[25] |
VASHUKOV I A. On mechanism of carbon dissolution in liquid iron[J]. Izvestiya Akademii Nauk SSSR, Metally, 1978: 33−37.
|
[26] |
WANG J, WANG W, CHEN X H, et al. Optimizing the performance of iron coke by coal blending: insights from the metallurgical properties and structural characteristics[J]. Journal of Cleaner Production, 2024, 450:142017. doi: 10.1016/j.jclepro.2024.142017
|
[27] |
WANG J, WANG W, CHEN X H, et al. Investigation on the evolution of structure and strength of iron coke during carbonization: carbon structure, pore structure, and carbonization mechanism[J]. Powder Technology, 2024, 431:119059. doi: 10.1016/j.powtec.2023.119059
|