Intersection of Spectrum for Two Sturm-Liouville Problems with Periodic Boundary Conditions
-
摘要: 为研究具有周期边界条件的两个Sturm-Liouville (SL)问题的交叉谱个数,构造一个二维向量SL问题使两个一维SL问题的谱集与该二维向量SL问题的谱集相同,计算出二维SL问题的二重特征值的一个上界MQ,得出二维SL问题的大于MQ的特征值都是单特征值,且只有有限个非单特征值;利用一维SL问题与二维向量SL问题谱集之间的关系,得出具有周期边界条件的两个一维SL问题交叉谱(相同特征值)的个数是有限的,得到具有周期边界条件的一维SL问题的二重特征值个数也是有限的,同时计算出最大二重特征值的上界估计。
-
关键词:
- 向量Sturm-Liouville问题 /
- 特征值 /
- 谱 /
- 重数 /
- 势函数
Abstract: In order to study the intersection of the spectra for two Sturm-Liouville (SL) problems with periodic boundary conditions (BCs), a two-dimensional vectorial SL problem is constructed. In this question the spectral sets of two one-dimensional SL problems are equal to the spectral sets of the two-dimensional vectorial SL problem. Then an upper bound MQ of the double eigenvalues of the two-dimensional SL problem is calculated. It is concluded that the eigenvalues greater than MQ of two-dimensional SL problem are single eigenvalues, and there are only a limited number of non single eigenvalues. Using the relationship between the spectral set of one-dimensional SL problem and two-dimensional vectorial SL problem, it is obtained that the number of cross spectra (same eigenvalues) of two one-dimensional SL problems with periodic BCs is limited, and the number of double eigen‐ values of one-dimensional SL problem with periodic BCs is also limited. At the same time, the upper bound esti‐ mation of the maximum double eigenvalues is calculated.-
Keywords:
- vectorial Sturm-Liouville problem /
- eigenvalue /
- spectrum /
- multiplicity /
- potential function
-
-
[1] AGRANOVICH Z S, MARCHENKO V A. The Inverse problem of Scattering Theory[M]. New York:Cordon and Breach, 1963:30-85.
[2] WEIDMANN J. Spectral Theory of Ordinary Differential Operators[M]. Berlin, Heidelberg:Springer-Verlag, 1987:1-85.
[3] CHELKAK D, KOROTYAEV E. Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem[J]. Journal of Functional Analysis, 2006, 241:359-373.
[4] GOHBERG I C, KREIN M G. Theory an Application of Volterra Operators in Hilbert Space[M]. Providence, Rhode Island:American Mathematical Society, 1970:30-35.
[5] WANG Z, WU H. The index problem for eigenvalues for coupled boundary conditions and Fulton's conjecture[J]. Monatshefte Fur Mathematik, 2009, 157:177-191.
[6] BINDING P A, VOLKMER H. Interlacing and oscillation for Sturm-Liouville problems with separated and coupled boundary conditions[J]. Journal of Computing Application, 2006, 194:75-93.
[7] 扬传富, 黄振友. n维向量Sturm-Liouville算子的正则迹及其在反谱中的应用[J]. 应用泛函分析学报, 2010, 12(2):137-142. [8] ZETTL A. Sturm-Liouville Theory[M]. Providence, Rhode Island:American Mathematical Society, 2010:1-95.
[9] JODEIT M, LEVITAN B M. Isospectal vector-valued Sturm-Liouville problems[J]. Letters Mathematical Physics, 1998, 43(2):117-122.
[10] CHELKAK D, KOROTYAEV E. Parametrization of the isospectral set of the vector-valued Sturm-Liouville problem[J]. Journal of Functional Analysis, 2006, 241:359-373.
[11] SHEN C L, SHIEN C T. On the multiplicity of a vectorial Sturm-Liouville differential equation and some related spectral problems[J]. Proceedings of the American Mathematical Society, 1999, 127(10):2943-2952.
[12] YANG C F, HUANG Z Y, YANG X P. The multiplicity of spectra of a vectorial Sturm-Liouville differential equation of dimension two and some applications[J]. Rocky Mountain Journal of Mathematics, 2007, 37(4):1379-1398.
[13] CHANANE B. Eigenvalues of vectorial Sturm-Liouville problems with parameter dependent boundary conditions[J]. Abstract and Applied Analysis, 2015(1/2/3):1-9.
[14] GRADSHTEYN I S, RYZHIK I M. Tables of Integrals, Series, and Products[M]. 5th ed. San Diego:Academic Press, 1979:24-97.
[15] ATKINSON F V. Discrete and Continuous Boundary Values Problems[M]. New York:Academic Press, 1968:1-120.
[16] BELLMANE R. The stability of solutions of linear differential equations[J]. Duke Math, 1943,10:643-647.
计量
- 文章访问数: 78
- HTML全文浏览量: 3
- PDF下载量: 18