高级检索

具有周期边界条件的两个Sturm-Liouville问题的交叉谱

张艳霞, 刘畅

张艳霞, 刘畅. 具有周期边界条件的两个Sturm-Liouville问题的交叉谱[J]. 安徽工业大学学报(自然科学版), 2022, 39(2): 202-209. DOI: 10.3969/j.issn.1671-7872.2022.02.012
引用本文: 张艳霞, 刘畅. 具有周期边界条件的两个Sturm-Liouville问题的交叉谱[J]. 安徽工业大学学报(自然科学版), 2022, 39(2): 202-209. DOI: 10.3969/j.issn.1671-7872.2022.02.012
ZHANG Yanxia, LIU Chang. Intersection of Spectrum for Two Sturm-Liouville Problems with Periodic Boundary Conditions[J]. Journal of Anhui University of Technology(Natural Science), 2022, 39(2): 202-209. DOI: 10.3969/j.issn.1671-7872.2022.02.012
Citation: ZHANG Yanxia, LIU Chang. Intersection of Spectrum for Two Sturm-Liouville Problems with Periodic Boundary Conditions[J]. Journal of Anhui University of Technology(Natural Science), 2022, 39(2): 202-209. DOI: 10.3969/j.issn.1671-7872.2022.02.012

具有周期边界条件的两个Sturm-Liouville问题的交叉谱

基金项目: 

安徽省高校自然科学基金项目(TZJQR002-2021)

详细信息
    作者简介:

    张艳霞(1980—),女,山东邹城人,副教授,主要研究方向为常微分方程与常微分算子。

  • 中图分类号: O29

Intersection of Spectrum for Two Sturm-Liouville Problems with Periodic Boundary Conditions

  • 摘要: 为研究具有周期边界条件的两个Sturm-Liouville (SL)问题的交叉谱个数,构造一个二维向量SL问题使两个一维SL问题的谱集与该二维向量SL问题的谱集相同,计算出二维SL问题的二重特征值的一个上界MQ,得出二维SL问题的大于MQ的特征值都是单特征值,且只有有限个非单特征值;利用一维SL问题与二维向量SL问题谱集之间的关系,得出具有周期边界条件的两个一维SL问题交叉谱(相同特征值)的个数是有限的,得到具有周期边界条件的一维SL问题的二重特征值个数也是有限的,同时计算出最大二重特征值的上界估计。
    Abstract: In order to study the intersection of the spectra for two Sturm-Liouville (SL) problems with periodic boundary conditions (BCs), a two-dimensional vectorial SL problem is constructed. In this question the spectral sets of two one-dimensional SL problems are equal to the spectral sets of the two-dimensional vectorial SL problem. Then an upper bound MQ of the double eigenvalues of the two-dimensional SL problem is calculated. It is concluded that the eigenvalues greater than MQ of two-dimensional SL problem are single eigenvalues, and there are only a limited number of non single eigenvalues. Using the relationship between the spectral set of one-dimensional SL problem and two-dimensional vectorial SL problem, it is obtained that the number of cross spectra (same eigenvalues) of two one-dimensional SL problems with periodic BCs is limited, and the number of double eigen‐ values of one-dimensional SL problem with periodic BCs is also limited. At the same time, the upper bound esti‐ mation of the maximum double eigenvalues is calculated.
  • [1]

    AGRANOVICH Z S, MARCHENKO V A. The Inverse problem of Scattering Theory[M]. New York:Cordon and Breach, 1963:30-85.

    [2]

    WEIDMANN J. Spectral Theory of Ordinary Differential Operators[M]. Berlin, Heidelberg:Springer-Verlag, 1987:1-85.

    [3]

    CHELKAK D, KOROTYAEV E. Parametrization of the isospectral set for the vector-valued Sturm-Liouville problem[J]. Journal of Functional Analysis, 2006, 241:359-373.

    [4]

    GOHBERG I C, KREIN M G. Theory an Application of Volterra Operators in Hilbert Space[M]. Providence, Rhode Island:American Mathematical Society, 1970:30-35.

    [5]

    WANG Z, WU H. The index problem for eigenvalues for coupled boundary conditions and Fulton's conjecture[J]. Monatshefte Fur Mathematik, 2009, 157:177-191.

    [6]

    BINDING P A, VOLKMER H. Interlacing and oscillation for Sturm-Liouville problems with separated and coupled boundary conditions[J]. Journal of Computing Application, 2006, 194:75-93.

    [7] 扬传富, 黄振友. n维向量Sturm-Liouville算子的正则迹及其在反谱中的应用[J]. 应用泛函分析学报, 2010, 12(2):137-142.
    [8]

    ZETTL A. Sturm-Liouville Theory[M]. Providence, Rhode Island:American Mathematical Society, 2010:1-95.

    [9]

    JODEIT M, LEVITAN B M. Isospectal vector-valued Sturm-Liouville problems[J]. Letters Mathematical Physics, 1998, 43(2):117-122.

    [10]

    CHELKAK D, KOROTYAEV E. Parametrization of the isospectral set of the vector-valued Sturm-Liouville problem[J]. Journal of Functional Analysis, 2006, 241:359-373.

    [11]

    SHEN C L, SHIEN C T. On the multiplicity of a vectorial Sturm-Liouville differential equation and some related spectral problems[J]. Proceedings of the American Mathematical Society, 1999, 127(10):2943-2952.

    [12]

    YANG C F, HUANG Z Y, YANG X P. The multiplicity of spectra of a vectorial Sturm-Liouville differential equation of dimension two and some applications[J]. Rocky Mountain Journal of Mathematics, 2007, 37(4):1379-1398.

    [13]

    CHANANE B. Eigenvalues of vectorial Sturm-Liouville problems with parameter dependent boundary conditions[J]. Abstract and Applied Analysis, 2015(1/2/3):1-9.

    [14]

    GRADSHTEYN I S, RYZHIK I M. Tables of Integrals, Series, and Products[M]. 5th ed. San Diego:Academic Press, 1979:24-97.

    [15]

    ATKINSON F V. Discrete and Continuous Boundary Values Problems[M]. New York:Academic Press, 1968:1-120.

    [16]

    BELLMANE R. The stability of solutions of linear differential equations[J]. Duke Math, 1943,10:643-647.

计量
  • 文章访问数:  78
  • HTML全文浏览量:  3
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-07
  • 网络出版日期:  2022-09-25
  • 发布日期:  2022-04-29

目录

    /

    返回文章
    返回